Protein structure refinement by optimization.
نویسندگان
چکیده
Knowledge-based protein potentials are simplified potentials designed to improve the quality of protein models, which is important as more accurate models are more useful for biological and pharmaceutical studies. Consequently, knowledge-based potentials often are designed to be efficient in ordering a given set of deformed structures denoted decoys according to how close they are to the relevant native protein structure. This, however, does not necessarily imply that energy minimization of this potential will bring the decoys closer to the native structure. In this study, we introduce an iterative strategy to improve the convergence of decoy structures. It works by adding energy optimized decoys to the pool of decoys used to construct the next and improved knowledge-based potential. We demonstrate that this strategy results in significantly improved decoy convergence on Titan high resolution decoys and refinement targets from Critical Assessment of protein Structure Prediction competitions. Our potential is formulated in Cartesian coordinates and has a fixed backbone potential to restricts motions to be close to those of a dihedral model, a fixed hydrogen-bonding potential and a variable coarse grained carbon alpha potential consisting of a pair potential and a novel solvent potential that are b-spline based as we use explicit gradient and Hessian for efficient energy optimization.
منابع مشابه
In Silico Prediction and Docking of Tertiary Structure of Multifunctional Protein X of Hepatitis B Virus
Hepatitis B virus (HBV) infection is a universal health problem and may result into acute, fulminant, chronic hepatitis liver cirrhosis, or hepatocellular carcinoma. Sequence for protein X of HBV was retrieved from Uniprot database. ProtParam from ExPAsy server was used to investigate the physicochemical properties of the protein. Homology modeling was carried out using Phyre2 server, and refin...
متن کاملGalaxyWEB server for protein structure prediction and refinement
Three-dimensional protein structures provide invaluable information for understanding and regulating biological functions of proteins. The GalaxyWEB server predicts protein structure from sequence by template-based modeling and refines loop or terminus regions by ab initio modeling. This web server is based on the method tested in CASP9 (9th Critical Assessment of techniques for protein Structu...
متن کامل3Drefine: an interactive web server for efficient protein structure refinement
3Drefine is an interactive web server for consistent and computationally efficient protein structure refinement with the capability to perform web-based statistical and visual analysis. The 3Drefine refinement protocol utilizes iterative optimization of hydrogen bonding network combined with atomic-level energy minimization on the optimized model using a composite physics and knowledge-based fo...
متن کاملi3Drefine Software for Protein 3D Structure Refinement and Its Assessment in CASP10
Protein structure refinement refers to the process of improving the qualities of protein structures during structure modeling processes to bring them closer to their native states. Structure refinement has been drawing increasing attention in the community-wide Critical Assessment of techniques for Protein Structure prediction (CASP) experiments since its addition in 8(th) CASP experiment. Duri...
متن کاملFireDock: a web server for fast interaction refinement in molecular docking†
Structural details of protein-protein interactions are invaluable for understanding and deciphering biological mechanisms. Computational docking methods aim to predict the structure of a protein-protein complex given the structures of its single components. Protein flexibility and the absence of robust scoring functions pose a great challenge in the docking field. Due to these difficulties most...
متن کاملKoBaMIN: a knowledge-based minimization web server for protein structure refinement
The KoBaMIN web server provides an online interface to a simple, consistent and computationally efficient protein structure refinement protocol based on minimization of a knowledge-based potential of mean force. The server can be used to refine either a single protein structure or an ensemble of proteins starting from their unrefined coordinates in PDB format. The refinement method is particula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proteins
دوره 83 9 شماره
صفحات -
تاریخ انتشار 2015